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Dynamics of foams with and without wall rupture
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A physically based model for the evolution of dry, two-dimensional foams based on a combination of mass
transfer, vertex movement, and edge relaxation, enables efficient and accurate simulation with and without wall
rupture. The stochastic nature of topological transitions due to numerical error has been carefully examined and
may explain the discrepancies found among various simulations. The separation of vertex and edge movements
permits a study of foam evolution that includes wall rupture. Comparison with recent experimental results is
presented that demonstrates that certain, semiempirical ‘‘breaking rules’’ are capable of reproducing both the
overall topological evolution and certain scaling behavior observed in the experiments.
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I. INTRODUCTION

The structure and evolution of cellular assemblies, es
cially foams of soap bubbles, has long been a source of
cination and scientific study. In particular, two-dimension
foams have been recognized as valuable analogs of g
boundaries in metals; and have the obvious advantag
being relatively easy to study experimentally and, more
cently, simulate numerically. The past ten years has see
intensification of effort to obtain a~reasonably! complete
experimental, theoretical and numerical picture of tw
dimensional soap foam evolution. One of the central iss
has been to establish the existence of a ‘‘scaling regime’
which the probability distributions characterizing the stat
tical structure of the foam are stationary and to meas
either experimentally and/or through simulation, the app
priate exponent and moments in this regime.

The basic phenomenology of two-dimensional foam e
lution is well established—at least in the case of foams t
are relatively ‘‘dry’’ ~i.e., contain virtually no fluid! and in
which wall rupture does not occur. We shall refer to su
foams as ‘‘normal’’ foams to distinguish them from what w
will term ‘‘breaking’’ foams in which wall rupture is a majo
part of the evolution. The study of this class of foam dyna
ics, which is very different~and much faster! from that of
normal foams, is one of our main objectives. Before discu
ing this further we summarize some of the basic ideas
volved in normal foam evolution. The principal driving forc
is diffusion, namely, gas molecules diffusing across
curved cell walls between bubbles. The pressure differe
across these walls is governed by the Young-Laplace la

DP5
2s

r
, ~1!

wheres is the coefficient of surface tension andr the radius
of curvature of the wall. Based on this law and element
geometric considerations, which include the assumption
551063-651X/97/55~1!/598~13!/$10.00
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in equilibrium the cell walls meet at 120°, von Neumann@1#
deduced a simple law governing cell growth, namely,

dan
dt

5k~n26!, ~2!

wherean is the area of ann-sided cell andk is a diffusion
constant. Thus cells with more than six sides grow in a
and those with less than six sides shrink. By itself this l
cannot fully explain typical foam evolution since addition
topological processes corresponding to various types of w
rearrangements also occur. For example, as four- and
sided bubbles shrink according to von Neumann’s law
point of zero area will be reached creating vertices wi
respectively, four and five cell walls meeting at a poi
Since the stable coordination number~the number of edges
meeting at a vertex! is three, there must be wall rearrang
ments to reestablish this configuration. These rearrangem
are calledT2 processes and are illustrated in Fig. 1. In a
dition, as also shown, one can identify a somewhat differ
transition involving wall switching which is called aT1 pro-
cess. Both of these processes play an important part in
foam evolution and, as we will discuss below, behavior
the scaling regime is sensitive to small variations in the
currence of these transitions. This is the notion of ‘‘stoch
ticity’’ in foam evolution raised by Fradkovet al. @2#. It
should also be noted that one of the assumptions in
Neumann’s law is that the pressure differences across
walls are small compared to the pressure in the domains@3#.

During the course of evolution, various statistical me
sures of the cellular structure can be followed~either in an
actual laboratory experiment or in a computer simulatio!.
These includer(n,t), the probability of finding ann-sided
cell, andr(a,t)da, the probability of finding a cell area be
tween a and a1da. A useful statistic is provided by the
second moment,m25((n26)2r(n,t), which gives a simple
measure of the system disorder~a monodisperse hexagon
foam, for whichm2 is obviously zero, is considered to be
highly ordered structure!. Over the years various experimen
598 © 1997 The American Physical Society
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55 599DYNAMICS OF FOAMS WITH AND WITHOUT WALL RUPTURE
~much of the published literature on two-dimensional foa
kinetics is well summarized in the reviews by Glazier a
Weaire @4# and Stavans@5#! have established that there
indeed a scaling regime in whicĥa& grows linearly witht
and that the various statistical quantities are stationary.
comment, however, that it appears to be easier to esta
stationarity forr(n,t) than forr(a,t). One problem in ob-
taining accurate experimental results is that of foam wetn
i.e., the accumulation of liquid in the vertices. This leads
the formation of ‘‘Plateau borders’’ with subsequent effe
on the idealized von Neumann law dynamics@6#. Another
hallmark of a scaling regime is the constancy ofm2: experi-
mental observations indicate a value of approximately 1.4
our computer simulations of normal foams we will show,
particular, the sensitivity ofm2 to the topological transitions

Numerical simulation of evolving foams is a challengin
problem in large-scale scientific computation. Surveys of
various approaches can be found in@4,5,7#. Although certain
‘‘nonphysical’’ models such as the Potts model are com
tationally inexpensive and can reproduce some of the b
evolution phenomenology, it is important to develop alg
rithms that can simulate the actual physics of foam evo
tion. This is a difficult problem since one must, in principl
follow the movement of all cell walls and vertices simult
neously. To date, the main two efforts in this direction a
due to Weaire and Kermode@8,9# ~henceforth referred to a
WK! and Aref and Herdtle@10,11# ~henceforth referred to a
AH!. Both approaches trace the quasiequilibrium configu
tions, i.e., configurations in which all edges meet at 120°
the net pressure across each edge is zero. The adjustm
needed to attain these arrangements are implemented
each ‘‘diffusion step’’ in which the area changes accord
to von Neumann’s law. In both algorithms the vertex a
edge adjustments are effected via a Jacobian matrix
proach. The most important difference between WK and
is that the latter computes the relaxation with the~very large!
Jacobian corresponding to the entire network of bubb

FIG. 1. Topological transitions in two-dimensional foams.~a!
T1 transition—wall switching.~b!–~d! T2 transition of three-,
four-, and five-sided cell, respectively.
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whereas WK breaks the Jacobian into small~535! blocks
~corresponding to one vertex and its local environment
three surrounding cells! and carrying out the relaxation on
sub-block at a time. This becomes significant at the leve
theT1 transitions: WK apply their criteria for allowing suc
transitions at the local~sub-block! level whereas AH apply
their criteria at the global level, i.e., after the entire netwo
has completed a relaxation step. As pointed out in@11# the
local approach can lead to spuriousT1 transitions with cor-
responding implications for long-range correlations in t
foam dynamics. On the other hand, the disadvantage of
AH approach is the inevitable increase in computational ti
that goes with manipulating very large matrices.

Here our aim is to simulate foam evolution in a way th
permits description of a wide range of behaviors: such
accurate normal foam evolution; breaking foams in wh
wall rupture is a frequent event; the inclusion of anisotro
~i.e., variations in surface energy according to cell orien
tion! to enable modeling of grain boundaries; and at the sa
time have sufficient control over the detailed dynamics
permit accurate investigation of stochastic effects in the
pological transition, etc. To be able to achieve this the sim
lation must work with a physically realistic model of evolu
tion in which pressure, gas mass, edge, and vertex mot
are all explicitly and independently taken into account in
way that is also efficient enough to allow routine studies
systems with large numbers of cells.

Below we describe our model of foam evolution and
algorithmic implementation. The model combines physica
realistic vertex motion with edge readjustments governed
the Young-Laplace law and mass diffusion governed b
von Neumann–like law in a way that is appropriate for t
study of both normal and breaking foams. Selected new
sults for normal foams, such as a study of stochastic effe
illustrate the effectiveness of the algorithm. These results
followed by the simulation studies of breaking foams.

II. MODEL AND ALGORITHMS

The relaxation from a nonequilibrium to a quasiequili
rium state in a two-dimensional foam is completely det
mined by the dynamics of the vertices and edges of
bubbles. In a normal foam, the relaxation takes place a
the gas diffuses from~in general! small bubbles to large
bubbles; and in a breaking foam, after the wall ruptures
physically realistic model~@12,13#! for vertex motion is to
represent the driving force on a vertex as the sum of
elastic forces generated by the three films that meet at
vertex. If we assume that~i! the surface tension of the film i
constant throughout the foam,~ii ! the motion of films is
purely dissipative@12#, and~iii ! the mobility ~by ‘‘mobility’’
we mean the inverse of the friction coefficient! per unit
length of the soap film is isotropic and constant; the veloc
of the i th vertex is given by@13#

vi ,v5

2smh (
~ j ! neighbors

ui j

(
~ j ! neighbors

l i j

, ~3!
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600 55J. J. CHAE AND M. TABOR
wheres andm denote, respectively, the surface tension a
mobility per unit length of the soap film, andh is the narrow
gap between two plates of the experimental cell. Theui j is
the unit vector attached to thei th vertex and tangent to th
film joining the i th and j th vertices, and the length of thi
film is l i j @see Fig. 2~a!#. The effect of velocities of neigh
boring vertices onvi ,v @13# is not considered in Eq.~3!.

In the vertex models of foam evolution~in which the
foam is treated as simply a network of connected vertic!
studied by Nakashima, Nagai, and Kawasaki@13#, three dif-
ferent vertex velocities were investigated. In these the ve
velocity is ~i! inversely proportional to the mean edge leng
in the entire foam;~ii ! inversely proportional to the sum o
the three edge lengths meeting at the vertex in question
~iii ! inversely proportional to the sum of the three ed
lengths projected onto a line normal to the force vector a
ing at that vertex@14#. These different choices of velocit
induce different network evolutions since, in the vert
model, the coarsening~i.e., growth and disappearance
bubbles! of a foam is driven exclusively by the vertex mov
ments. By contrast, in our model vertex movement is j
one part of the two-step relaxation process~the other step
being edge adjustment! during which a nonequilibrium con
figuration returns to a quasiequilibrium one while the act
coarsening is handled in a separate diffusion step. Comp
son tests in our model of all three different choices of ver
velocity gave overall foam evolution results that were ide
tical to within a negligible range of errors.

The motion of an edge is, in principle, determined by t
net force per unit area, given the mobility and the height o
soap film. The magnitude of this force, which we will ref
to as the ‘‘net pressure,’’ on thei th edge,Pi

net, is given by

Pi
net5Pi ,a2Pi ,b22

s

r i
, ~4!

where Pi ,a2Pi ,b is the pressure difference across thei th
edge~the left-hand and right-hand domains of thei th edge

FIG. 2. Local geometry and parameters of~a! a vertex, and~b!
an edge.
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are labeled as thea andb domains, respectively!, and r i is
the radius of curvature of that edge as shown in Fig. 2~b!.
GivenPi

net, the velocity of the center of thei th edgevi ,e is
given by

vi ,e5n̂imhPi
net, ~5!

where n̂i is unit normal vector at the center of the edg
However, as we now argue, this last equation does not n
to be used to obtain physically realistic edge adjustment

In typical experimental conditions, where the pressure
the gas and the surface tension of the film are of order6

g/sec2 cm and 102 g/sec2, respectively, Eqs.~3! and~5! show
that the elastic relaxation of the edges is rapid compare
that of the vertices. This is also observed in the breaki
foam experiments@15#. Therefore, it is reasonable to assum
that the edges are in equilibrium between each movemen
the vertices. As a consequence, the edge velocity in Eq.~5! is
not employed explicitly in our algorithm and instead the r
dius of curvature of each edge is enforced to be in equi
rium between each movement of the vertices, i.e., we ad
the radius to satisfy Eq.~4!. We can think of this as a ‘‘geo-
metrical,’’ rather than ‘‘dynamical’’ approach to the edg
adjustment part of the relaxation process. We also note
shown in Fig. 2~b!, that the variable that we use to speci
the curvature of thei th edge is chosen to be an ‘‘openin
angle’’ u i of the i th circular edge rather than the radius b
cause edges whose opening angles are bigger than 180
commonly observed in a breaking-foam experiment@15#.

A. Simulation of normal foams

Coarsening of a normal foam is due to the gas diffus
from higher-pressure domains to lower-pressure doma
followed by the elastic relaxation of the edges and vertic
which can be assumed to occur almost instantaneously
cause the gas diffusion is much slower than the elastic re
ation. Although von Neumann’s law is usually formulated
terms of area and assumes incompressibility of the gas
assume the ideal gas law and formulate it in terms of
‘‘mass,’’ i.e., the number of gas molecules, in the bubb
The diffusion rate of gas through thei th edgeRi ,d is propor-
tional to the pressure differenceDPi across thei th edge and
length of thei th edge, i.e.,

Ri ,d} l iDPi . ~6!

Equation~6! and the considerations described in Sec. I g
the analogue of von Neumann’s law for ‘‘mass transfer
namely,

dMn

dt
5k~n26!, ~7!

wheren andMn are the number of sides and mass of t
bubble, respectively, andk is a coefficient proportional to the
diffusion constantk in Eq. ~2!.

The overall evolution of a normal foam proceeds in t
following way. During a ‘‘diffusion step’’ of durationDtD ,
bubbles lose or gain mass according to Eq.~7!. After the
diffusion step, a readjustment of the curvature of each e
is required because the mass and pressure in each bubbl
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55 601DYNAMICS OF FOAMS WITH AND WITHOUT WALL RUPTURE
have changed to new values and, furthermore, this curva
adjustment will result in the angles between neighbor
edges deviating from 120°. Accordingly, following the di
fusion step, a two-part ‘‘relaxation step’’ is implemente
which consists of~i! moving all vertices, according to Eq
~3!, at the same time in a time stepDt r and ~ii ! readjusting
the curvature of each edge while all vertices are fixed. Th
two steps are performed alternately until the quasiequi
rium configuration of the foam is reached and then the n
diffusion step is implemented.

The possible occurrence of aT2 transition during the dif-
fusion step and aT1 transition during the relaxation step
plus several other considerations, are involved in determ
ing optimal values of theDtD andDt r . In the latter case, al
the vertex motions have to be monitored with care sinc
collision between vertices heralds the onset of aT1 transi-
tion and unphysical phenomena such as repeated oscilla
of these transitions, which can occur in numerical simu
tions @13#, have to be avoided. Overall, we are able to imp
ment a series of criteria for estimating the time steps in a w
which eliminates spurious behavior and/or loss of conv
gence and enables rather tight control on the accuracy
form of the topological transitions. A detailed discussion
these considerations and many other algorithmic detail
given in @7#.

As stated above the relaxation step consists of alter
vertex movements and curvature adjustments. The latter
implemented by eliminating the net pressures, as gover
by Eq. ~4!, on all edges. Since the positions of the vertic
and the masses of the domains are assumed to remain
while the edges move, the pressure of a domain is a func
of its opening angles. The change in the net pressure on
i th edge,dPi

net, can be derived from Eq.~4! in terms of the
change in the opening angle of that edge,du i :

dPi
net5(

j

]Pi ,a

]u j
du j2(

j 8

]Pi ,b

]u j 8
du j 81

2s

r i
2

]r i
]u i

du i ,

~8!

where the sum is over the edges of thea and b domains,
respectively@see Fig. 2~b!#. Given the net pressures on th
edges,du i can be calculated from Eq.~8!, which in turn is
subtracted from the currentu i to obtain the newu i .

For large systems solution of Eq.~8! can become compu
tationally expensive. In contrast to the direct, Jacobi
matrix approaches used in the AH and WK algorithms,
use an iterative method in the form of a multidimension
Newton-Raphson method with a diagonal precondition
The basic procedure consists of changing the curvature~i.e.,
the opening angleu! of each edge in sequence, and repeat
this until the desired accuracy is achieved. Thus, if the c
vatures of all edges except thei th edge are stationary, th
change inu i to eliminate the net pressure on thei th edge can
be derived from Eq.~8!, namely,

du i5dPi
netY S ]Pi ,a

]u i
2

]Pi ,b

]u i
1
2s

r i
2

]r i
]u i

D . ~9!

As WK pointed out, the complete elimination of the net pre
sure on each edge can drive the configuration of a foam
from equilibrium. Based on extensive numerical trials@7#,
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the best convergence is achieved when we changeu i by an
amount corresponding todu i divided by the average numbe
of sides of the two domains that share thei th edge.

B. Simulation of breaking foam

One of our main objectives is to develop an algorith
suitable for the simulation of breaking foams. These ha
only recently been studied experimentally by Burnettet al.
@15# and exhibit many differences from normal foams. T
fundamental difference is that of time scale: a normal fo
evolves over periods of tens of hours whereas a ruptu
foam disintegrates in minutes. Typically, after a finite peri
of relatively few wall ruptures a ‘‘cascade regime’’ sets in,
which many frequent and even simultaneous breakings
cur. Thus diffusion, the rate-determining process in norm
foams, is no longer relevant and the evolution is domina
by the rapid transmission of stresses through the disinteg
ing network. As a consequence, many of the phenom
associated with normal foam evolution, such as univer
scaling behavior, are no longer seen. However, as we
describe in Sec. IV, a new type of scaling regime may
pear.

As discussed above in the algorithm for a normal foam
assume that a foam recovers a quasiequilibrium config
tion between diffusion steps. By contrast, in the case o
breaking foam, we cannot assume this prior to a wall rupt
because the time interval between successive breakings
not be long enough for a nonequilibrium configuration
relax back to a quasiequilibrium one. However, our appro
of tracking the motion of all vertices and edges at any inst
means that the breakdown cascade is easily followed by c
sidering each wall rupture as a process of eliminating a
lected edge. Consider thei th edge,ei in Fig. 3~a!. After the
breaking ofei , two pairs of edges that were connected toei
become two new edges as illustrated with thick lines in Fi
3~a! and 3~b!. The curvature of each newly created edge
adjusted such that the areas of theA andB domains in Fig.

FIG. 3. Sequential stages of relaxation after the breakage
edgeei ; ~a! prior to breakage,~b! immediately after breakage,~c!
after the readjustments of curvature, and~d! after the foam reestab
lishes quasiequilibrium.
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602 55J. J. CHAE AND M. TABOR
3~b! remain constant. TheC and D domains combine to
form a new, enlargedC domain with new values of area
mass, and pressure. The relaxation process is applied ju
in normal foams; namely, the readjustments of curvat
@Fig. 3~c!#, and the movement of vertices are effected alt
nately until the next breaking occurs. Figure 3~d! shows the
equilibrium configuration after complete elastic relaxati
from Fig. 3~c!. This capability of handling a nonequilibrium
configuration is an advantage over the algorithms of WK a
AH in which only the quasiequilibrium configurations a
traced.

The actual physics of the wall rupture in the experime
is not well understood and in our simulations, we choo
certain~semiphenomenological! ‘‘static’’ breaking rules, i.e.,
rules that depend in some way on the length of an e
rather than its velocity. The consequence of this is that e
as a region of the foam is relaxing rapidly around a giv
rupture, the choice of the next rupture can be made with
being unduly influenced by its predecessor. Therefore, s
cessive ruptures can occur relatively remotely from e
other—a behavior that is consistent with the experimen
observations. Although there are undoubtedly some lo
range correlations between successive ruptures, we adop
following three simple breaking rules in which the probab
ity of a given edge breaking is~i! random,~ii ! proportional to
the length of its edge, and~iii ! proportional to the square o
the length of its edge. The motivation for rule~ii ! is provided
by the observation that the average bursting time for a st
soap bubble is inversely proportional to its surface area@16#;
and the other rules are introduced for comparison.

Another difficulty in a breaking-foam simulation lies i
determining the time interval between successive break
again due to the current lack of understanding of the pre
mechanisms governing the wall rupture. In our current sim
lations, the time interval between breakingsDtB is chosen
randomly between 0 and 23DtB,avg, whereDtB,avg denotes
a user-specified average period between breakings. Altho
this ‘‘rule’’ for the time interval agrees with the experiment
observation@15# in the ‘‘cascade regime’’—in which the
number of bubbles decreases linearly in time—it cannot p
vide true, real time, breaking-foam dynamics. However,
numerical results can still be compared with those of exp
ment in terms of ‘‘topological evolution’’; namely, following
the evolution as a function of bubble number rather than
real time.

III. NUMERICAL RESULTS FOR NORMAL FOAM
EVOLUTION

We now present a number of simulation results for n
mal foams that illustrate the effectiveness of our algorit
and/or reveal differences with results obtained in other
merical studies. Frequently we will use two basic statisti
measures of the structure of a foam: the side distribu
r(n) and the normalized area distributionr(a/^a&). Themth
moments of these distributions are, respectively,

mm5(
n

r~n!~n2^n&!m, ~10!
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A5E r~a/^a&!~a/^a&21!md~a/^a&!, ~11!

where^n& is the average number of sides of a bubble and^a&
is the mean bubble area.

A. Initial conditions, pressure effects, and efficiency

The Voronoi construction has long been recognized a
very useful way of generating initial conditions for foa
simulations~as well as other problems involving tilings o
the plane!. The standard construction~see, for example,@17#
or @13#! involves building the cells about points deposit
randomly in the plane. It is possible to produce differe
networks by imposing a ‘‘hard-core’’ constraint on the
points, namely, setting a minimum distance on their sepa
tion. The larger the core, the less disordered the struct
For the simulation of foams presented here, we use dou
periodic Voronoi networks with large, small, or no ha
cores. However, normally constructed Voronoi networ
cannot be used directly as initial foam structures sin
Voronoi cell walls usually do not meet at 120°. To obtain t
actual initial bubble structures from these Voronoi networ
a uniform initial pressureP0 is assigned on each cell an
then the relaxation process described in Sec. II is imp
mented. The resulting structure, however, varies with the
signed initial pressure whereas in the case of incompress
gas, only one relaxed structure exists for a given Voro
network.

In the actual simulations, Eq.~4! is reformulated in terms
of dimensionless parameters, namely,

P̃i
net5 P̃i ,a2 P̃i ,b2

2

r̃ i
, ~12a!

P̃5
P

~s/h!
, ~12b!

r̃ i5r i /h. ~12c!

Thus, for actual laboratory experiments run at norm
pressure with typical soap concentrations and cell sep
tions, the initial dimensionless pressureP̃0 is usually of or-
der 104. This large value ofP̃0 significantly slows down the
speed of the simulation. However, we have found that v
Neumann’s law~2! is well satisfied~typically to within 1%!
at much lower values ofP̃0 ~say, no smaller thanP̃05102,
i.e., P0.1022 atm! and providing this is the case, runs
this low pressure~P0.1022 atm! are essentially equivalen
to those at normal pressure. The only noticable trend is
foams with lower pressure tend to have larger values ofm2
than those with higher pressure@7#. We mention in passing
that some unusual effects can be observed in simulat
involving very low initial pressures. For example,
P0.1025 atm, Voronoi networks of 1024 bubbles with e
ther large, small, or no hard cores, were found never to re
to equilibrium configurations. In addition, by the time th
initial pressure is reduced toP0.1024 atm, significant de-
viations from von Neumann’s law are observable@7#. We
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55 603DYNAMICS OF FOAMS WITH AND WITHOUT WALL RUPTURE
comment that another way of regarding foam evolution
different ~initial! pressures is that, as seen in Eq.~12b!, in-
creasing the surface tension of a soap film is equivalen
decreasing the pressure.

FIG. 4. A typical sequence of structures in the coarsening o
normal foam~run viii!. Number of bubbles in~a!–~f! are 1024, 899,
704, 503, 297, and 100.
t

to

In Fig. 4, we show a typical evolution sequence that sta
with a relaxed small-core Voronoi network withP051022

atm. Such a sequence is typical of the topological chan
seen in an evolving normal foam.

This is an appropriate point to discuss the efficiency
our algorithm. The typical CPU time used for one bubb
disappearance in a run such as above~Fig. 4!, is found to
scale asO(N0.5–0.6) ~whereN is the current bubble number!,
in contrast toO(N1.3) exhibited by AH’s algorithm~WK did
not report this data!. All our simulations were performed on
workstation computers and the typical CPU time used
1024 bubbles to relax to 100 bubbles is approximately 15
on a SPARCstation 20 with a single processor. A simi
calculation by the AH algorithm requires approximately 30
of Cray-YMP time.

Finally, in Table I, we summarize all the runs and initi
configurations used in our foam simulations. Without chan
ing the geometry, a different initial configuration~e.g., runs
ii and iii! can be generated by changing the~equal! pressure
added to each cell. In the various results described below
‘‘run’’ number identifies the details of the initial condition
used and can be read off this table.

B. Numerical stability and effects of stochasticity

The idea of ‘‘stochasticity’’ in two-dimensional soa
foam has been recently discussed by Fradkovet al. @2#. Their
paper describes how a foam can evolve to more than
configuration when a four- or five-sided cell vanishes.
shown in Fig. 5, for instance, a four-sided cell disappeara
leads to two different configurations and each configurat

a

er the
TABLE I. Summary of all runs and initial configurations for normal foam simulations

Run
Initial

networka
Initially assigned
pressureb ~atm!

Initial foam parameters

Notem2 m 2
A P0 ~atm!

i Voronoi, 1024 1.891 0.606 1024

ii no hard-core 1023

iii ~m251.889, 1022

iv m 2
A50.314! 1022 1.762 0.316 1022

v 1024 1.455 0.457 1024

vi Voronoi, 1023

vii small hard-core 1022

viii ~m251.469, 1022 1.346 0.226 1022

ix m 2
A50.225! 1022 large error controlsc

x 1022 high m2
c

xi 1022 low m2
c

xii Voronoi, 1024 0.945 0.138 1024

xiii large hard-core 1023

xiv ~m250.945, 1022

xv m 2
A50.060! 1022 0.938 0.060 1022

xvi 0.230 0.142 1022 backward diffusiond

Perfect hexagons single defect
xvii ~one edge removed! 1022 0.006 0.005 1022 propagation

aThem2 andm 2
A values of the initial Voronoi network are given for comparison with the values found in the foam configuration aft

initializing relaxation step.
bThe initially assigned pressure to each cell to relax a nonequilibrium~Voronoi! network to an equilibrium configuration.
cThese runs start with the same initial configuration for run viii, but with different evolution conditions.
dThe initial configuration of this run is prepared by applying the ‘‘backward diffusion’’ to that of run xv.
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604 55J. J. CHAE AND M. TABOR
will, in turn, follow a topologically different path of evolu
tion. In soap bubble experiments, the choice of a cer
configuration after a four- or five-sided cell shrinks to ze
area ~leaving fourfold or fivefold vertex! depends on fas
dynamical effects stemming from foam wetness, capill
instability, the appearance of conical bubbles, and poss
defects on the plate surfaces@2#. By contrast, the numerica
foam evolution is idealized as a two-dimensional ‘‘dry
froth and is effectively ‘‘deterministic’’ in that a four- o
five-sided cell is reduced to a three-sided cell via~sequential!
T1 transitions on the shortest side before disappearance
configuration contains a disappearing four- or five-sided
in which more than one side has equal shortest length,
evolution is ‘‘nondeterministic’’; but this is unlikely to occu
@2# and is never observed in our various runs. Howev
small fluctuations due, for example, to accumulated num
cal errors, can cause different wall switchings in a vanish
four- or five-sided cell, which can result in completely d
ferent foam evolution paths.

In any numerical model controls on the numerical err
for the selected variables need to be introduced. For
ample, to find the quasiequilibrium configurations, WK iter
tively solve the relevant set of equations until the root me
square of the area change, or displacement of the vertic
smaller than a given value. In the AH model, the numeri
errors related to step size are an inevitable consequenc
their use of a~huge! Jacobian matrix equation. In our mode
during the readjustment of the curvature, the maximum
viation Dumax in the opening angle of an edge from the qu
siequilibrium value is tested against a given error control
addition, the vertices are allowed to move until the ma
mum angle deviation~from 120°! between neighboring
edgesDFmax is smaller than another error control. Usin
various values ofDFmax andDumax, we can obtain topologi-
cally different foam evolutions from one initial configura
tion.

We performed two different runs from an identical initi
configuration with DFmax50.5°, Dumax50.02° and with

FIG. 5. Two possible configurations after four-sided cell disa
pearance.~a! Evolves to~b! whenDFmax50.5°,Dumax50.02°, and
to ~c! whenDFmax51°, Dumax50.04°. Number of bubbles of~a! is
890.
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DFmax51°, Dumax50.04°. The difference in topology~trig-
gered by the different error controls! between two series o
configurations is first observed when the number of bubb
is 889. Figure 5 shows the two different configurations af
a four-sided cell vanishes. In spite of the difference in top
ogy, m2 of these two configurations remains the same fo
while as shown in Fig. 6, since the side distributions are s
identical in this particular example. As the two foams evolv
the topological difference between the two configurations
comes more distinct. This is because the local difference
topology propagate in space and further topological chan
through other four- or five-sided cell disappearances, can
cur at a later time. Thus as the foam evolves the ove
behavior ofm2 can show deviations of the order of 10%
~The further fluctuations for bubble numbers less than ab
300 may also be related to the relative poorness of statis
measures for small bubble number.! Other numerical experi-
ments~not shown! with tighter error controls suggest that th
choiceDFmax50.5°, Dumax50.02° is adequate for our pur
poses and these are used in all of our runs.

Our normal protocol for effecting aT2 transition on four-
or five-sided bubbles is to first reduce the cell to a thr
sided bubble via a sequence of~one or two, respectively! T1
transitions on the shortest sides. However, it is a
possible—say as a result of numerical error—to effect th
transitions on other sides of the cell and hence induce dif
ent topological configurations. Accordingly, in one run w
made the choice that always gave the lowest subsequenm2
and in another, the highest subsequentm2. These runs are
compared with the ‘‘normal’’ protocol in Fig. 7. The inter
esting feature here is that when the lowestm2 path is chosen,
m2 does not continuously decrease but seems to atta
lower bound of about 0.7, which is well maintained in th
scaling regime~considered to be the regime of approx
mately constantm2!. Although this behavior is a consequen
of an artificial construction, not realized in real experimen
it raises the interesting theoretical challenge of trying to p
dict the existence and value of such a lower bound. It is
clear what the maximalm2 path corresponds to; but it i
interesting to note that mean-field theories@18# lead to even
higherm2 values—which is a consequence of the way t
theory chooses to handleT2 transitions~i.e., always elimi-

-

FIG. 6. m2 vs number of bubbles. Solid line forDFmax50.5°,
Dumax50.02° and dotted line forDFmax51°, Dumax50.04°. Arrow
indicates the moment when the ‘‘bifurcation’’ shown in Fig. 5 o
curs.
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55 605DYNAMICS OF FOAMS WITH AND WITHOUT WALL RUPTURE
nating the edge from the smallest bubbles!. The energetics of
these different paths is also of note. Here foam ‘‘energy’’E
is defined as the total length of soap film in the entire bub
network. Thus, in the case of a perfect hexagonal foam,
energy isEhex5~2)NAtot!

1/2, whereN is the number of
bubbles andAtot is the total area of a system@11#. As shown
in Fig. 8, when we plot the ratioE/Ehex, the lowm2 path has
the highest energy whereas the highm2 and normalm2 paths
are much closer in energy.

C. Scaling regimes and other behaviors

The existence of a scaling regime in normal foam evo
tion, as well as in grain growth, has been extensively stud
experimentally and by computer simulation@4,5#. One of the
main ways of characterizing this regime is by following t
behavior ofm2—which should be constant during scalin
behavior. In our case, extensive studies on a variety of in
conditions~runs iii, iv, vii, viii, xiv, and xv, which all have
the same initial pressureP051022 atm! show am2 value in
the scaling regime which fluctuates between 1.2 and 1.4@7#.
We also found that, in general, the more disordered~higher
m2! initial foam configurations reach the scaling state fas
Our observedm2 is slightly higher than AH’s and slightly
lower than the value reported earlier in experiments@19# and
simulations by Weaire and Lei@20#. This small difference is

FIG. 7. The behaviors ofm2 in ‘‘normal,’’ ‘‘high,’’ and ‘‘low’’
m2 models.

FIG. 8. The ratio of energy toEhex vs number of bubbles in
‘‘normal,’’ ‘‘high,’’ and ‘‘low’’ m2 models.
e
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probably negligible considering the sensitivity of norm
foam evolution to initial configuration and the numerical e
rors as discussed in Sec. III B.

The growth rate of the average cell area has also bee
central issue in foam experiments and simulations and
accepted that normal foams exhibit power-law growth@4,5#,
i.e.,

^a&5A~ t2t0!
a, ~13!

whereA is a constant. In spite of the variance in measu
ments ofa ~ranging from 0.64 to 2.0! in earlier experiments
@21–23,3#, recent careful experimental results@24,25# indi-
cated the growth exponent is close to one—as suggeste
simple dimensional analysis. The only point we wish
make here is to emphasize the sensitivity of the exponen
fitting procedure. This is illustrated by data obtained fro
run viii. Fitting directly with Eq.~13! ~since determininga in
a log-log plot is likely to have systemetic errors@4#!, we
found thata is 1.0260.02 using the data between 750 a
200 bubbles and 1.2660.07 when the range is reduced
7002300. Clearly, reliable calculation of the growth exp
nent requires simulations of large systems.

The scaling regime, by definition, is characterized by
constancy of all distributions, such as the side number
normalized area distributions. As shown in Fig. 9, side d
tributions are clearly stationary in the scaling regime. T
type of behavior is observed in most other numerical stud
although we seer(n56) being only slightly higher than
r(n55), whereas AH observed a more noticeable differen

FIG. 9. ~a! Side and~b! area and~c! length distributions for run
viii. Dotted line is for the initial configuration, and dot-dashed lin
is whenN5890 ~transient state!. Solid lines are forN5660, 520,
and 380 representing the scaling state.
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606 55J. J. CHAE AND M. TABOR
between them. Again, our results lie between AH’s and
perimental results@3# in which r(n56),r(n55). By con-
trast, althoughr(a/^a&) in the initial and transient states ca
be distinguished from that in a scaling state, it is difficult
claim that r(a/^a&) is stationary in the scaling regime
which might be due to the limited data. The behavior
r(a/^a&) is not reported in the AH and WK studies. We al
show the normalized edge-length distributionr( l /^ l &) that
exhibits some degree of stationarity. Later we will see t
this distribution function has special properties in the case
breaking foam evolution.

In complete contrast to the above, single defect propa
tion in a perfect hexagonal foam is one example in wh
normal foam evolution never reaches a scaling state.
though we were drawn to this problem because of its pa
analogy to front propagation in solidification, it has also be
considered recently in@26# where it was claimed that in a
mean field model, scaling behavior could occur.

In our simulation, a single defect is generated by elim
nating one edge from a perfect hexagonal lattice, and
structure is relaxed to an equilibrium initial configuratio
which is shown in Fig. 10~a!. Driven by von Neumann’s law
the initial eight-sided bubble, surrounded by two five-sid
bubbles and six hexagons, will grow continuously; co
versely, the two five-sided bubbles will shrink. These d
namics generate the outward propagation of an area unp
lated by bubbles. The growth rate of the central area in F
10 can be predicted by von Neumann’s law. Using the rad
of the central arear c , Eq. ~2! becomesd(r c

2)/dt}nc , where
the number of sides,nc , of this area is large. Sincenc is
proportional tor c , drc/dt is constant. As shown in Fig. 11
the result of our simulation shows linear growth of the
dius, as expected. A very similar calculation was also
ported recently by Yi, Mombach, and Glazier@27# using a
Potts model code. In their simulations, the evolving front
less symmetric and shows what are probably a few spur
large bubbles in the ‘‘melting’’ domain—undoubtably an a
tifact of the Potts model representation. In fact the hig
symmetric evolution that we observe also provides an a
tional test of our code and the error controls since no sy

FIG. 10. Sequence of configurations for the propagation o
single defect, when~a! t50, ~b! t550, ~c! t5100, and~d! t5150.
Initial number of bubbles is 1019 and the unit of time is arbitra
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metry is incorporated in the edge and vertex movem
steps.

Finally, in our studies of normal foams we have carri
out extensive investigations of Lewis’s law@28#, which
claims a linear relationship between the mean area of
n-sided cell and the side number; and the Aboav-Weaire
@23,29,30# which gives a semiempirical relationship for th
average number of sides of the cells that are neighbors t
n-sided cell. Our numerical results@7# all agree closely with
those found in other studies~see, for example,@24,11#!.

IV. NUMERICAL RESULTS FOR BREAKING FOAM
EVOLUTION

The phenomenon of wall rupture, although it has be
commonly observed in normal foams@24#, grain growth
@22,31#, and magnetic garnet films@32#, has not been studied
in detail due to its complexity and the relatively small co
tribution it makes to the statistical quantities measured
those experiments. The first experiment devoted solely
this subject was recently performed by Burnettet al. @15#
and our simulation studies were motivated by this expe
mental work. In this experiment, wall rupture was initiate
by gentle heating from a light box underneath the experim
tal cell, and at a critical ‘‘breaking time’’~which depends on
the temperature ramping rate! a large-scale mechanical ca
cade of wall rupture was observed. In this ‘‘cascade
gime,’’ it was found that the mean edge length grew linea
in time and the associated edge-length distributions were
fectively stationary.

In principle, the evolution of a breaking foam can be co
pletely determined if the exact time and location of ea
breakage is known. However, the modeling of a break
foam is still at a relatively primitive stage since the dynam
of wall rupture, which involves many complex physico
chemical issues, is not well understood, and the availa
experimental results are limited to those mentioned above
Sec. II B, we postulated three breaking rules in which
probability to break thei th edge is given by

Probi}~ l i !
z, ~14!

wherel i is the length ofi th edge andz takes values 0, 1, and

a

.

FIG. 11. The radius of the big center bubble,r c vs time in the
propagation of a single defect.
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55 607DYNAMICS OF FOAMS WITH AND WITHOUT WALL RUPTURE
2 for each breaking rule. Here, we will test the validity
these breaking rules by comparing the numerical results w
the experimental ones.

Traditionally, the evolution of a froth is characterized b
following the behavior of various quantities, such as me
area growth,m2, various probability distributions, etc., as
function of either time or the number of bubbles. Howev
since it is only the breaking rules, and not the time inter
between successive wall breaks that are being tested ag
the experimental results, we need some notion of the to
logical evolution without involving the time variable explic
itly. The apparent difference in topology between a norm
and breaking foam can be characterized by the ‘‘homoge
ity’’ of the spatial structure. Namely, a breakage tends
drive the pattern of a foam toward an inhomogeneous
pearance, while the normal foam tends to retain some de
of homogeneity.~A single defect propagation in a norm
foam being one exception.! The topological evolution can b
characterized by the changes in homogeneity that are re
to the energy or mean edge length of a system. Rather
attempt to follow these changes as a function of time,
follow them as a function of bubble number. For any coa
ening system, the mean area is proportional to 1/N by defi-
nition, namely,

^a&5AtotS 1ND , ~15!

whereAtot is the total area of a system andN the total num-
ber of bubbles. Accordingly, we have proposed@15# a
power-law evolution for the mean edge length in terms
1/N, i.e.,

^ l &}S 1ND b

~16!

whereb denotes the ‘‘evolution exponent’’ of the mean ed
length.

As shown in Fig. 12, for anormal form with initial
Voronoi configuration,̂ l & satisfies Eq.~16! quite well andb
is found between 0.48 and 0.50. For a single defect pro

FIG. 12. ~a! ^a& vs 1/N for run xv. By definition of the mean
area, the ‘‘evolution exponent’’ for mean area is always one.^ l & vs
1/N for ~b! run xv; and~c! run xvii ~a single defect propagation!.
The dimension of the system is scaled such that initial value of^ l &
is the same as that of^a& for run xv.
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gation by contrast,b is 0.016, with a negligible standar
deviation that corresponds to a structure evolving towa
extreme inhomogeneity. If we regard these behaviors of n
mal foam relaxation and single defect propagation, resp
tively, as the two extremes of homogeneous and inhomo
neous structures, we would expectb for a breaking foam to
lie between 0 and 0.5. For each breaking rule, we choose
two initial configurations that were used for runs xv and iv
a normal foam. We label the breaking foam runs with le
disordered initial configuration~used in run xv! as runs I, II,
and III corresponding to each breaking rulez50, 1, and 2,
respectively, and the runs with more disordered initial co
figuration ~used in run iv! as runs IV, V, and VI.

A. Evolution topology

In order to get an overall picture of the evolution
breaking foams, it is helpful to look at a sequence
‘‘frames’’ for the different breaking rules. These are show
in Figs. 13–15 in which all foams start with the identic
initial structure whosem2 is similar to that of the initial foam
used in the experimental work@15#. In all three figures, we
see the progressive enlargement, due to wall breakage
various bubbles that eventually become surrounded by c
ters of small bubbles. Tracking this process frame by fra
~i.e., a movie! clearly shows long-range correlations, i.e.,
wall breakage in one region triggering a movement so
distance away, which are often accompanied by succes
T1 processes. A noteworthy feature of the simulations is
frequent appearance of two-sided bubbles; just as in the
perimental studies of breaking foams~and virtually never in
normal foams!. A two-sided bubble, generated from a thre
sided bubble that loses a neighboring edge~due to breakage!,
appears to be stable unless a nearby bubble moves c
enough to induce a wall switching.

FIG. 13. Sequence of configurations for run I. Number
bubbles in~a!–~f! are 1024, 880, 710, 500, 310, and 100.
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608 55J. J. CHAE AND M. TABOR
Although the phenomena described above for each br
ing rule generally agree to some extent with the experime
observation, there are clear differences in evolving patte
for the different breaking rules. The evolution for the rando
breaking rule (z50) seems to be different from the expe
mental pattern evolution in that more long edges and
small bubbles survive at later stages. It is, however, diffic
to compare qualitatively the evolution with breaking ru

FIG. 14. Sequence of configurations for run II. Number
bubbles in~a!–~f! are 1024, 880, 710, 500, 310, and 100.

FIG. 15. Sequence of configurations for run III. Number
bubbles in~a!–~f! are 1024, 880, 710, 500, 310, and 100.
k-
al
s

s
lt

z51 or 2 with that of the experiment; a detailed quantitati
comparison will be discussed in Sec. III B. In Fig. 16, w
show an evolution sequence that starts with a more di
dered initial structure with the breaking rulez51 ~run V!.
These sequential frames indicate that the evolution o
breaking foam is sensitive to the initial foam structure;
least for those breaking rules, that depends in some way
the length of the edge.

B. Š l ‹ behavior

As discussed before, one way to characterize a tw
dimensional coarsening cellular system is through vari
evolution exponents. By using Eq.~15! in Eq. ~16! we see
the relationship

^ l &}^a&b. ~17!

In the case of normal foam evolution~excluding pathological
cases such as single defect propagation shown in Sec. II!,
we know that the bubble area scales like^ l &2 ~i.e., the bubble
length scale set bya1/2 is the same length scale as that set
the edge length! and henceb50.5. However, in a breaking
foam, the length scale set by a typical bubble edge is
longer the same as that set by the square root of the bu
area. Accordingly, we can no longer expectb50.5 and,
based on the observation that the typical structure is that
~very! large bubble made up of many short sides, we wo
expectb,0.5. Experimentally, the observed values rang
from 0.25 to 0.32@15#.

We show log-log plots of̂ l & as a function of 1/N in Fig.
17, in which the power law in Eq.~16! is well satisfied for all
runs except run VI, and the fitted values ofb from these
plots are summarized in Table II. With the random break
rule, regardless of the initial foam structure, we obta

FIG. 16. Sequence of configurations for run V. Number
bubbles in~a!–~f! are 1024, 880, 710, 500, 310, and 171.
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55 609DYNAMICS OF FOAMS WITH AND WITHOUT WALL RUPTURE
b50.41, which is higher than the experimental value. Th
high evolution exponents, together with the differences
topology of the evolving patterns described in Sec. IV
lead us to conclude that wall breakages do not occur at
dom in a breaking foam. Sinceb is sensitive to the initial
foam structure for the breaking rulesz51 and z52, the
evolution exponents for runs II and III, whose initialm2 is
similar to that of the experimental foam, are compared w
the experimental results. This indicates that the breaking
z52 represents the dynamics of a breaking foam m
closely than the breaking rulez51. In Sec. II B, the break-
ing rule z51 was proposed based on the empirical obser
tion that the probability to rupture astatic single soap film,
within a given time interval, is proportional to its surfac
area. Therefore, we suspect that the movement of a s
film, including expansion or shrinkage, also affects its pro
ability to rupture.

C. Probability distributions

In the case of a normal foam, the probability distributio
of side, area, and edge length were used in order to show
existence of the scaling regime, in which these distributio
are stationary. By contrast, in a breaking foam, the peak
the area and side distributions shift towards smaller value
shown in Figs. 18 and 19. In the side distribution, it is inte
esting thatr(n) always increases whenn,5 and decrease

FIG. 17. Log-log plot of^ l & vs 1/N for ~a! runs I–III and ~b!
runs IV–VI.

TABLE II. ‘‘Evolution exponent’’ for all runs in the breaking
foam simulations. These exponents are obtained with neglig
standard deviations by fitting the data in the range ofN51024–
300.

Run I II III IV V VI

0.412 0.394 0.306 0.409 0.325 0.245
e
n
,
n-

h
le
e

-

ap
-

he
s
of
as
-

when 5,n,8 ~9 for run V! and eventually the four-sided
bubbles are dominant. However, the length distributio
show somewhat different behavior from the area and s
distributions as shown in Fig. 20. Although the length dist
butions for runs I–III which start with a narrow length dis
tribution, show a small transition, overall they seem to
stationary—which is consistent with the experimental obs
vation @15#.

V. CONCLUSIONS

We have developed a new algorithm that can deliver
ficient and accurate simulations of two-dimensional d

le

FIG. 18. Area distributions for runs~a! I, ~b! II, ~c! III, and ~d!
V.

FIG. 19. Side distributions for runs~a! II and ~b! V.
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610 55J. J. CHAE AND M. TABOR
foams. Overall, our results for a normal foam using this
gorithm are in broad agreement with those by WK and A
except for a few cases in which our values of quantities su
asm2 and various probability distributions lie between tho

FIG. 20. Length distributions for runs~a! I, ~b! II, ~c! III,
and ~d! V.
s

-

h

of WK and AH. The fact that our algorithm tracks the mov
ment of all edges and vertices at any instant enables
chaotic behavior triggered by numerical errors to be inve
gated. It is very likely that these ‘‘stochastic’’ effects are
source of the small discrepancies found among the ph
cally realistic computational models, namely, WK, AH, an
ours. Breaking foams have been simulated using this a
rithm and compared with the recent experimental work@15#.
In spite of the lack of understanding of the precise break
mechanism, the simulation results with the breaking r
z52 show similar evolution topologies and growth exp
nents to those seen in the experiments.

Finally, we comment that since the~individually stored!
surface tension of each edge is independent of the ove
simulation procedure, the code can be easily modified
systems in which the surface tension of each edge va
This makes it fairly easy to study anisotropic grain growth
which the surface energy varies as a function of orientat
between adjacent cells@7#.
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