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Dynamics of foams with and without wall rupture
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A physically based model for the evolution of dry, two-dimensional foams based on a combination of mass
transfer, vertex movement, and edge relaxation, enables efficient and accurate simulation with and without wall
rupture. The stochastic nature of topological transitions due to numerical error has been carefully examined and
may explain the discrepancies found among various simulations. The separation of vertex and edge movements
permits a study of foam evolution that includes wall rupture. Comparison with recent experimental results is
presented that demonstrates that certain, semiempirical “breaking rules” are capable of reproducing both the
overall topological evolution and certain scaling behavior observed in the experiments.
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PACS numbds): 82.70.Rr, 83.70.Hq

I. INTRODUCTION in equilibrium the cell walls meet at 120°, von Neumdanh

The structure and evolution of cellular assemblies, espe(-jeduced a simple law governing cell growth, namely,

cially foams of soap bubbles, has long been a source of fas- da.
cination and scientific study. In particular, two-dimensional _”:K(n_e), )
foams have been recognized as valuable analogs of grain dt
boundaries in metals; and have the obvious advantage of ) i ) o
being relatively easy to study experimentally and, more reWherea, is the area of am-sided cell and« is a diffusion
cently, simulate numerically. The past ten years has seen &Pnstant. Thus cells with more than six sides grow in area
intensification of effort to obtain dreasonably complete ~and those with less than six sides shrink. By itself this law
experimental, theoretical and numerical picture of two-cannot fuIIy explain typical foam (_avoluuon since additional
dimensional soap foam evolution. One of the central issuefPPological processes corresponding to various types of wall
has been to establish the existence of a “scaling regime” iféarrangements also occur. For example, as four- and five-
which the probability distributions characterizing the statis-Sided bubbles shrink according to von Neumann's law, a
tical structure of the foam are stationary and to measure?0int of zero area will be reached creating vertices with,
either experimentally and/or through simulation, the approfespectively, four and five cell walls meeting at a point.
priate exponent and moments in this regime. Slnce the stable coprdlnatlon numi@ne number of edges
The basic phenomenology of two-dimensional foam evo/meeting at a vert_e><|s t_hree, t_here _rnust be wall rearrange-
lution is well established—at least in the case of foams thafnents to reestablish this configuration. These rearrangements
are relatively “dry” (i.e., contain virtually no fluiland in ~ &re calledT2 processes and are illustrated in Fig. 1. In ad-
which wall rupture does not occur. We shall refer to suchdition, as also shown, one can identify a somewhat different
foams as “normal” foams to distinguish them from what we transition involving wall switching which is called®l pro-
will term “breaking” foams in which wall rupture is a major ©€SS. Both of these processes play an important part in the
part of the evolution. The study of this class of foam dynam-foam evolution and, as we will discuss below, behavior in
ics, which is very differen{and much fasterfrom that of the scaling regime is s<_ar_1$|t|ve tq s.mall vanemons in the oc-
normal foams, is one of our main objectives. Before discuss¢urence of these transitions. This is the notion of “stochas-
ing this further we summarize some of the basic ideas infiCity” in foam evolution raised by Fradkoet al. [2]. It
volved in normal foam evolution. The principal driving force Should also be noted that one of the assumptions in von
is diffusion, namely, gas molecules diffusing across thd\eumann’s law is that the pressure dlffe_rences across the
curved cell walls between bubbles. The pressure differenc@lls are small compared to the pressure in the don{&ihs

across these walls is governed by the Young-Laplace law During the course of evolution, various stgtistic_al mea-
sures of the cellular structure can be follow@ither in an

actual laboratory experiment or in a computer simulgtion
20 These includep(n,t), the probability of finding am-sided

Ap= T 1) cell, andp(a,t)da, the probability of finding a cell area be-

tweena and a+da. A useful statistic is provided by the

second momenjz,==(n—6)%p(n,t), which gives a simple

whereo is the coefficient of surface tension andhe radius measure of the system disorder monodisperse hexagonal
of curvature of the wall. Based on this law and elementaryfoam, for whichu, is obviously zero, is considered to be a
geometric considerations, which include the assumption thatighly ordered structujeOver the years various experiments
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whereas WK breaks the Jacobian into sm&bk5) blocks
(corresponding to one vertex and its local environment of
three surrounding cellsand carrying out the relaxation one
sub-block at a time. This becomes significant at the level of
the T1 transitions: WK apply their criteria for allowing such
transitions at the localsub-block level whereas AH apply
their criteria at the global level, i.e., after the entire network
has completed a relaxation step. As pointed outlifj the
local approach can lead to spurioli$ transitions with cor-
responding implications for long-range correlations in the
foam dynamics. On the other hand, the disadvantage of the
AH approach is the inevitable increase in computational time
that goes with manipulating very large matrices.

Here our aim is to simulate foam evolution in a way that
permits description of a wide range of behaviors: such as
accurate normal foam evolution; breaking foams in which
wall rupture is a frequent event; the inclusion of anisotropy
(i.e., variations in surface energy according to cell orienta-
tion) to enable modeling of grain boundaries; and at the same
time have sufficient control over the detailed dynamics to
permit accurate investigation of stochastic effects in the to-

FIG. 1. Topological transitions in two-dimensional foans.  pological transition, etc. To be able to achieve this the simu-
T1 transition—wall switching.(b)—(d) T2 transition of three-, |ation must work with a physically realistic model of evolu-
four-, and five-sided cell, respectively. tion in which pressure, gas mass, edge, and vertex motions

(much of the published literature on two-dimensional foam?'© all ex.plicitly anq 'independently taken into' accoun.t in a
kinetics is well summarized in the reviews by Glazier and V&Y that S also efficient enough to allow routine studies of
Weaire[4] and Stavang5]) have established that there is systems with Iarge_numbers of cells. . .
indeed a scaling regime in whiga) grows linearly witht Be]ow we describe our model of foam evglutlon an_d Its
and that the various statistical quantities are stationary. ngg?nt_hmlc |mpIem§antat|prr11. 'I(;he moc(ifl combines physmgllt))/
comment, however, that it appears to be easier to establi{ alistic vertex motion with edge rea .Just'ments governed by
stationarity forp(n,t) than forp(a,t). One problem in ob- e Young-Laplace law and mass diffusion governed by a

taining accurate experimental results is that of foam Wetnesé/,?nd Ne?rgatr;]n—llke Ilaw '(;1; WEII(Y th?t IS apgrolprliitg for the
i.e., the accumulation of liquid in the vertices. This leads toorudy of both normal and breaking foams. Selected new re-

the formation of “Plateau borders” with subsequent effects_sults for normal foams, such as a study of stochastic effects,

on the idealized von Neumann law dynam[&. Another illustrate the effectiveness of the algorithm. These results are
hallmark of a scaling regime is the constancyaf experi- followed by the simulation studies of breaking foams.
mental observations indicate a value of approximately 1.4. In
our computer simulations of normal foams we will show, in
particular, the sensitivity oft, to the topological transitions.

Numerical simulation of evolving foams is a challenging  The relaxation from a nonequilibrium to a quasiequilib-
problem in large-scale scientific computation. Surveys of thejum state in a two-dimensional foam is completely deter-
various approaches can be found4i5,7. Although certain  mined by the dynamics of the vertices and edges of the
“nonphysical” models such as the Potts model are compupubbles. In a normal foam, the relaxation takes place after
tationally inexpensive and can reproduce some of the basige gas diffuses fron{in general small bubbles to large
evolution phenomenology, it is important to develop algo-pubbles; and in a breaking foam, after the wall ruptures. A
rithms that can simulate the actual physics of foam evoluphysically realistic mode{[12,13) for vertex motion is to
tion. This is a difficult problem since one must, in principle, represent the driving force on a vertex as the sum of the
follow the movement of all cell walls and vertices simulta- elastic forces generated by the three films that meet at that
neously. To date, the main two efforts in this direction areyertex. If we assume théi) the surface tension of the film is
due to Weaire and Kermod®,9] (henceforth referred to as constant throughout the foantij) the motion of films is
WK) and Aref and Herdtl§10,11] (henceforth referred to as purely dissipativd12], and(iii ) the mobility (by “mobility”

AH). Both approaches trace the quasiequilibrium configurawe mean the inverse of the friction coefficigrer unit

tions, i.e., configurations in which all edges meet at 120° angength of the soap film is isotropic and constant; the velocity
the net pressure across each edge is zero. The adjustmestsheith vertex is given by13]

needed to attain these arrangements are implemented after

each “diffusion step” in which the area changes according

to von Neumann’s law. In both algorithms the vertex and

edge adjustments are effected via a Jacobian matrix ap- Z‘Wh(.) rghbm“ii
proach. The most important difference between WK and AH Vi = D e

is that the latter computes the relaxation with thery large I
Jacobian corresponding to the entire network of bubbles (i) neighbors

(b)

©

(d
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are labeled as the and 8 domains, respectivelyandr; is
the radius of curvature of that edge as shown in Fig).2
Given P, the velocity of the center of thigh edgev, ¢ is
given by

Vie= ﬁ|/.Lh P?Et, (5

where n; is unit normal vector at the center of the edge.
However, as we now argue, this last equation does not need
to be used to obtain physically realistic edge adjustments.

In typical experimental conditions, where the pressure of
the gas and the surface tension of the film are of ord&r 10
g/seé cm and 16 g/seé, respectively, Eqq3) and(5) show
that the elastic relaxation of the edges is rapid compared to
that of the vertices. This is also observed in the breaking-
foam experimentgl5]. Therefore, it is reasonable to assume
that the edges are in equilibrium between each movement of
the vertices. As a consequence, the edge velocity irf&ds
not employed explicitly in our algorithm and instead the ra-
dius of curvature of each edge is enforced to be in equilib-
rium between each movement of the vertices, i.e., we adjust
the radius to satisfy Eq4). We can think of this as a “geo-
metrical,” rather than “dynamical” approach to the edge
Oadjustment part of the relaxation process. We also note, as
shown in Fig. 2b), that the variable that we use to specify
the curvature of theth edge is chosen to be an *“opening
angle” g; of theith circular edge rather than the radius be-
cause edges whose opening angles are bigger than 180° are
commonly observed in a breaking-foam experimlri].

®

FIG. 2. Local geometry and parameters(af a vertex, andb)
an edge.

whereo and p denote, respectively, the surface tension an
mobility per unit length of the soap film, aridis the narrow
gap between two plates of the experimental cell. Theis
the unit vector attached to théh vertex and tangent to the
film joining the ith andjth vertices, and the length of this
film is I;; [see Fig. 29)]. The effect of velocities of neigh-
boring vertices ory; , [13] is not considered in Eq3). _ .
In the vertex models of foam evolutiofin which the A. Simulation of normal foams

foam is treated as simply a network of connected vertices Coarsening of a normal foam is due to the gas diffusion
studied by Nakashima, Nagai, and Kawaddk], three dif-  from higher-pressure domains to lower-pressure domains,
ferent vertex velocities were investigated. In these the vertefollowed by the elastic relaxation of the edges and vertices,
velocity is (i) inversely proportional to the mean edge lengthwhich can be assumed to occur almost instantaneously be-
in the entire foam{ii) inversely proportional to the sum of cause the gas diffusion is much slower than the elastic relax-
the three edge lengths meeting at the vertex in question; Gition. Although von Neumann’s law is usually formulated in
(iii) inversely proportional to the sum of the three edgeterms of area and assumes incompressibility of the gas, we
lengths projected onto a line normal to the force vector actassume the ideal gas law and formulate it in terms of gas
ing at that verte14]. These different choices of velocity “mass,” i.e., the number of gas molecules, in the bubble.
induce different network evolutions since, in the vertexThe diffusion rate of gas through tlien edgeR, 4 is propor-

model, the coarseningi.e., growth and disappearance of tional to the pressure differenceP; across theth edge and
bubbles of a foam is driven exclusively by the vertex move- length of theith edge, i.e.,

ments. By contrast, in our model vertex movement is just

one part of the two-step relaxation procdtise other step Ri ¢*liAP;. (6)
being edge adjustmentluring which a nonequilibrium con-

figuration returns to a quasiequilibrium one while the actualEquation(6) and the considerations described in Sec. | give
coarsening is handled in a separate diffusion step. Comparibe analogue of von Neumann’'s law for “mass transfer,”
son tests in our model of all three different choices of vertexnamely,

velocity gave overall foam evolution results that were iden-

tical to within a negligible range of errors. %zk(n—& @)

The motion of an edge is, in principle, determined by the dt '
net force per unit area, given the mobility and the height of a
soap film. The magnitude of this force, which we will refer wheren and M, are the number of sides and mass of the
to as the “net pressure,” on thigh edge,Pi“e‘, is given by  bubble, respectively, aridis a coefficient proportional to the
diffusion constank in Eq. (2).

The overall evolution of a normal foam proceeds in the
following way. During a “diffusion step” of duratiomtp,
bubbles lose or gain mass according to Ef. After the
where P; ,—P; z is the pressure difference across fite  diffusion step, a readjustment of the curvature of each edge
edge(the left-hand and right-hand domains of ttth edge s required because the mass and pressure in each bubble will

(o
PI®=P o~ Pig=2, 4
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have changed to new values and, furthermore, this curvature

adjustment will result in the angles between neighboring 2) 5//‘&*\,\//“/viy,\ﬁf b)f/"'L\\ /\j\ pe
edges deviating from 120°. Accordingly, following the dif- e T e
fusion step, a two-part “relaxation step” is implemented Y b o ‘ T
which consists of(i) moving all vertices, according to Eq. Lo la)E L [A N
(3), at the same time in a time steéyt, and (i) readjusting — D] p /*/ — B,/
the curvature of each edge while all vertices are fixed. These § ‘ N o | ~

two steps are performed alternately until the quasiequilib-
rium configuration of the foam is reached and then the next
diffusion step is implemented.

The possible occurrence ofT& transition during the dif-

fusion step and &1 transition during the relaxation step, o Ny o \( {

plus several other considerations, are involved in determin- C ) /\ o ( \\ A
ing optimal values of théty andAt, . In the latter case, all }\,,\v ~{ T = —
the vertex motions have to be monitored with care since a L \‘/ b ) N
collision between vertices heralds the onset dflatransi- N x % J’

tion and unphysical phenomena such as repeated oscillations
of these transitions, which can occur in numerical simula-
tions[13], have to be avoided. Overall, we are able to imple- FIG. 3. Sequential stages of relaxation after the breakage of
ment a series of criteria for estimating the time steps in a wagdgee; ; (a) prior to breakage(b) immediately after breakagés)
which eliminates spurious behavior and/or loss of converafter the readjustments of curvature, gdflafter the foam reestab-
gence and enables rather tight control on the accuracy aridhes quasiequilibrium.

form of the topological transitions. A detailed discussion of

these considerations and many other algorithmic details ighe pest convergence is achieved when we chahdsy an

given in[7]. . . amount corresponding ¢, divided by the average number
As stated above the relaxation step consists of alternaigs siges of the two domains that share ttie edge.
vertex movements and curvature adjustments. The latter are

implemented by eliminating the net pressures, as governed
by Eq. (4), on all edges. Since the positions of the vertices B. Simulation of breaking foam
and the masses of the domains are assumed to remain fixed One of our main objectives is to develop an algorithm

while the edges move, the pressure of a domain is a functiogiiaple for the simulation of breaking foams. These have
of its opening angles. The change in the net pressure on the, . recently been studied experimentally by Burretal.
ith edge dPi™, can be derived from Ed4) in terms of the  [15] and exhibit many differences from normal foams. The

change in the opening angle of that eddé, : fundamental difference is that of time scale: a normal foam
evolves over periods of tens of hours whereas a rupturing

dp_netzz IPia dH-—E % do., + 2_‘27 ﬂ dé: foam disintegrates in minutes. Typically, after a finite period

! To90; a6 Tt ag of relatively few wall ruptures a “cascade regime” sets in, in

(8)  which many frequent and even simultaneous breakings oc-
cur. Thus diffusion, the rate-determining process in normal
where the sum is over the edges of theand 8 domains,  foams, is no longer relevant and the evolution is dominated
respectively{see Fig. 2b)]. Given the net pressures on the py the rapid transmission of stresses through the disintegrat-
edgesdd; can be calculated from E@8), which in turn is  jng network. As a consequence, many of the phenomena
subtracted from the curremt to obtain the news, . associated with normal foam evolution, such as universal
For large systems solution of E@) can become compu-  scaling behavior, are no longer seen. However, as we will
tationally eXpenSive. In contrast to the direCt, JaCObiandescribe in Sec. |V7 a new type of Sca”ng regime may ap-
matrix approaches used in the AH and WK algorithms, wepear.
use an iterative method in the form of a multidimensional As discussed above in the algorithm for a normal foam we
Newton-Raphson method with a diagonal preconditionergssume that a foam recovers a quasiequilibrium configura-
The basic procedure consists of changing the curvatiee  tion between diffusion steps. By contrast, in the case of a
the opening angl®) of each edge in sequence, and repeatingreaking foam, we cannot assume this prior to a wall rupture
this until the desired accuracy is achieved. Thus, if the curpecause the time interval between successive breakings may
vatures of all edges except thth edge are stationary, the not be long enough for a nonequilibrium configuration to
change ing; to eliminate the net pressure on tile edge can  relax back to a quasiequilibrium one. However, our approach

be derived from Eq(8), namely, of tracking the motion of all vertices and edges at any instant
means that the breakdown cascade is easily followed by con-
do.=dpnet ﬂ_ ﬂ+ 2_‘7 ﬁ ) sidering each wall rupture as a process of eliminating a se-

! : a0, a0, e a6 lected edge. Consider théh edge,g; in Fig. 3. After the

breaking ofe;, two pairs of edges that were connectedio
As WK pointed out, the complete elimination of the net pres-become two new edges as illustrated with thick lines in Figs.
sure on each edge can drive the configuration of a foam fas(a) and 3b). The curvature of each newly created edge is
from equilibrium. Based on extensive numerical trififg, adjusted such that the areas of theand B domains in Fig.
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3(b) remain constant. Th&€ and D domains combine to A o

form a new, enlarged domain with new values of area, Mm:J p(al(a))(a/(a)—1)"d(a/(a)), (11)

mass, and pressure. The relaxation process is applied just as

|n.normal foams; namely, the readjiustments of curvaturc?Nhere<n> is the average number of sides of a bubble &d

[Fig. 3(c)], and the movement of vertices are effected alter-
) . . Is the mean bubble area.

nately until the next breaking occurs. Figur@Bshows the

equilibrium configuration after complete elastic relaxation

from Fig. 3c). This capability of handling a nonequilibrium A. Initial conditions, pressure effects, and efficiency

configuration is an advantage over the algorithms of WK and The Voronoi construction has long been recognized as a
AH in which only the quasiequilibrium configurations are very useful way of generating initial conditions for foam
traced. simulations(as well as other problems involving tilings of
The actual physics of the wall rupture in the experimentshe plang. The standard constructigeee, for example17]

is not well understood and in our simulations, we chooseor [13]) involves building the cells about points deposited
certain(semiphenomenologicgtstatic” breaking rules, i.e., randomly in the plane. It is possible to produce different
rules that depend in some way on the length of an edgeetworks by imposing a “hard-core” constraint on these
rather than its velocity. The consequence of this is that evepoints, namely, setting a minimum distance on their separa-
as a region of the foam is relaxing rapidly around a givention. The larger the core, the less disordered the structure.
rupture, the choice of the next rupture can be made withoutor the simulation of foams presented here, we use doubly
being unduly influenced by its predecessor. Therefore, sud€eriodic Voronoi networks with large, small, or no hard
cessive ruptures can occur relatively remotely from eactgores. However, normally constructed Voronoi networks
other—a behavior that is consistent with the experimentaf@nnot be used directly as initial foam structures since

observations. Although there are undoubtedly some |ong\_/oronoi cell walls usually do not meet at 120°. To obtain the

range correlations between successive ruptures, we adopt tﬁgtu"’.‘fl |n|t|gl E:.“?ble Stl’UCélDJI’e.S from theze Voron?: nen/vorlés,
following three simple breaking rules in which the probabil- a unitorm Initial pressure, 1S assigned on each cell an

: g A - : then the relaxation process described in Sec. Il is imple-
ity of a given gdge breakmg ©) rando.m,(u) proportional to mented. The resulting structure, however, varies with the as-
the length of its edge, an@i) proportional to the square of

the length of its edge. The motivation for rie) is provided signed initial pressure whereas in the case of incompressible

: S .gas, only one relaxed structure exists for a given Voronoi

by the observation that the average bursting time for a stati etwork.
soap bubble is inversely proportional to its surface i In the actual simulations, E@4) is reformulated in terms
and the other rules are introduced for comparison. of dimensionless parameters, namely,

Another difficulty in a breaking-foam simulation lies in
determining the time interval between successive breaks— ~ et = -
again due to the current lack of understanding of the precise P =Pia=Pig==, (123
mechanisms governing the wall rupture. In our current simu- '
lations, the time interval between breakingsg is chosen
randomly between 0 and>2Atg ,,4, WhereAtg 4 denotes B P
a user-specified average period between breakings. Although ~ (o/h)’
this “rule” for the time interval agrees with the experimental
observation[15] in the “cascade regime”—in which the -
number of bubbles decreases linearly in time—it cannot pro- ri=ri/h. (129
vide true, real time, breaking-foam dynamics. However, the
numerical results can still be compared with those of experi- Thus, for actual laboratory experiments run at normal
ment in terms of “topological evolution”; namely, following pressure with typical soap concentrations and cell separa-
the evolution as a function of bubble number rather than otions, the initial dimensionless pressiPg is usually of or-

(12b

real time. der 1¢. This large value oP, significantly slows down the
speed of the simulation. However, we have found that von
. NUMERICAL RESULTS FOR NORMAL FOAM Neumann’s law(2) is well satisfied(typically to within 1%
EVOLUTION at much lower values o, (say, no smaller thaR,= 107,

Po,=10"2 atm) and providing this is the case, runs at
low pressurdP,=10 2 atm) are essentially equivalent
. i . X Mo those at normal pressure. The only noticable trend is that
and/or reveal differences with results obtained in other NUsoams with lower pressure tend to have larger valueg.of
merical studies. Frequently we will use two basic statisticak, - those with higher pressufgl. We mention in passing
measures of the structure of a foam: the side distributiony,o some unusual effects can be observed in simulations
p(n) andthe normall_zec_i area dlStnbuUp(xa/(g)). Themth involving very low initial pressures. For example, at
moments of these distributions are, respectively, P,=10"° atm, Voronoi networks of 1024 bubbles with ei-
ther large, small, or no hard cores, were found never to relax
to equilibrium configurations. In addition, by the time the
_ n(n—(ny)™ 1 initial pressure is reduced B,=10"" atm, significant de-
Hem ; p(M(n=(m)"™, (10 viations from von Neumann's law are observabld. We

. . ie.,
We now present a number of simulation results for nor-,¢
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In Fig. 4, we show a typical evolution sequence that starts
with a relaxed small-core Voronoi network wiffy=10"2
atm. Such a sequence is typical of the topological changes
seen in an evolving normal foam.

This is an appropriate point to discuss the efficiency of
our algorithm. The typical CPU time used for one bubble
disappearance in a run such as ab@vig. 4), is found to
scale afD(N°%®=%9 (whereN is the current bubble number
in contrast toO(N*%) exhibited by AH’s algorithm(WK did
not report this data All our simulations were performed on
workstation computers and the typical CPU time used for
1024 bubbles to relax to 100 bubbles is approximately 150 h
on a SPARCstation 20 with a single processor. A similar
calculation by the AH algorithm requires approximately 30 h
of Cray-YMP time.

Finally, in Table I, we summarize all the runs and initial
configurations used in our foam simulations. Without chang-
ing the geometry, a different initial configuratide.g., runs
il and iii) can be generated by changing {legua) pressure
added to each cell. In the various results described below, the
“run” number identifies the details of the initial conditions
used and can be read off this table.

FIG. 4. A typical sequence of structures in the coarsening of a B. Numerical stability and effects of stochasticity
normal foam(run viii). Number of bubbles ifa)—(f) are 1024, 899, '
704, 503, 297, and 100. The idea of “stochasticity” in two-dimensional soap

foam has been recently discussed by Fraditoal.[2]. Their

comment that another way of regarding foam evolution ajpaper describes how a foam can evolve to more than one
different (initial) pressures is that, as seen in EtRb), in-  configuration when a four- or five-sided cell vanishes. As
creasing the surface tension of a soap film is equivalent tehown in Fig. 5, for instance, a four-sided cell disappearance
decreasing the pressure. leads to two different configurations and each configuration

TABLE I. Summary of all runs and initial configurations for normal foam simulations

Initial foam parameters

Initial Initially assigned
Run network pressur (atm o uh Py (atm Note
i Voronoi, 104 1.891 0.606 10*
i no hard-core 10°
i (up,=1.889, 102
iv w5=0.314 1072 1.762 0.316 10?
v 1074 1.455 0.457 10
Vi Voronoi, 108
vii small hard-core 10?
viii (1p=1.469, 102 1.346 0.226 10?
ix nb=0.225 1072 large error controfs
X 1072 high u,°
Xi 1072 low p,°
xii Voronoi, 104 0.945 0.138 10*
xiii large hard-core 10°
Xiv (up=0.945, 102
XV w5=0.060 1072 0.938 0.060 10?
XVi 0.230 0.142 102 backward diffusiof
Perfect hexagons single defect
xvii (one edge removed 1072 0.006 0.005 10? propagation

The u, and 5 values of the initial Voronoi network are given for comparison with the values found in the foam configuration after the
initializing relaxation step.

®The initially assigned pressure to each cell to relax a nonequilibfiononoi) network to an equilibrium configuration.

‘These runs start with the same initial configuration for run viii, but with different evolution conditions.

9The initial configuration of this run is prepared by applying the “backward diffusion” to that of run xv.
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FIG. 5. Two possible configurations after four-sided cell disap-
pearance(a) Evolves to(b) whenA®,,,,=0.5°, A#,,,=0.02°, and Ad,,,=1° A6,,,=0.04°. The difference in topologtrig-
to (c) whenAd,,,,=1°, Af.=0.04°. Number of bubbles @¢b) is  gered by the different error contrglbetween two series of
890. configurations is first observed when the number of bubbles

is 889. Figure 5 shows the two different configurations after

will, in turn, follow a topologically different path of evolu- a four-sided cell vanishes. In spite of the difference in topol-
tion. In soap bubble experiments, the choice of a certairogy, u, of these two configurations remains the same for a
configuration after a four- or five-sided cell shrinks to zerowhile as shown in Fig. 6, since the side distributions are still
area (leaving fourfold or fivefold vertex depends on fast identical in this particular example. As the two foams evolve,
dynamical effects stemming from foam wetness, capillarythe topological difference between the two configurations be-
instability, the appearance of conical bubbles, and possibleomes more distinct. This is because the local differences in
defects on the plate surfacg®|. By contrast, the numerical topology propagate in space and further topological changes,
foam evolution is idealized as a two-dimensional “dry” through other four- or five-sided cell disappearances, can oc-
froth and is effectively “deterministic” in that a four- or cur at a later time. Thus as the foam evolves the overall
five-sided cell is reduced to a three-sided cell(gaquential  behavior of u, can show deviations of the order of 10%.
T1 transitions on the shortest side before disappearance. If@he further fluctuations for bubble numbers less than about
configuration contains a disappearing four- or five-sided celB00 may also be related to the relative poorness of statistical
in which more than one side has equal shortest length, theeasures for small bubble numbe®ther numerical experi-
evolution is “nondeterministic”; but this is unlikely to occur ments(not shown with tighter error controls suggest that the
[2] and is never observed in our various runs. Howeverchoice A®,,,=0.5°, A6,,,,=0.02° is adequate for our pur-
small fluctuations due, for example, to accumulated numeriposes and these are used in all of our runs.
cal errors, can cause different wall switchings in a vanishing Our normal protocol for effecting &2 transition on four-
four- or five-sided cell, which can result in completely dif- or five-sided bubbles is to first reduce the cell to a three-
ferent foam evolution paths. sided bubble via a sequence(ohe or two, respectivejyT1

In any numerical model controls on the numerical errorstransitions on the shortest sides. However, it is also
for the selected variables need to be introduced. For expossible—say as a result of numerical error—to effect these
ample, to find the quasiequilibrium configurations, WK itera-transitions on other sides of the cell and hence induce differ-
tively solve the relevant set of equations until the root mearent topological configurations. Accordingly, in one run we
square of the area change, or displacement of the vertices isade the choice that always gave the lowest subsequent
smaller than a given value. In the AH model, the numericaland in another, the highest subsequgat These runs are
errors related to step size are an inevitable consequence cbmpared with the “normal” protocol in Fig. 7. The inter-
their use of ghuge Jacobian matrix equation. In our model, esting feature here is that when the lowgstpath is chosen,
during the readjustment of the curvature, the maximum deu, does not continuously decrease but seems to attain a
viation A6, in the opening angle of an edge from the qua-lower bound of about 0.7, which is well maintained in the
siequilibrium value is tested against a given error control. Inscaling regime(considered to be the regime of approxi-
addition, the vertices are allowed to move until the maxi-mately constant,). Although this behavior is a consequence
mum angle deviation(from 1209 between neighboring of an artificial construction, not realized in real experiments,
edgesAd,., is smaller than another error control. Using it raises the interesting theoretical challenge of trying to pre-
various values oA®,,,, and A6, We can obtain topologi- dict the existence and value of such a lower bound. It is not
cally different foam evolutions from one initial configura- clear what the maximak, path corresponds to; but it is
tion. interesting to note that mean-field theorjé$§] lead to even

We performed two different runs from an identical initial higher u, values—which is a consequence of the way this
configuration with A®,,,,=0.5°, A6,,,,=0.02° and with theory chooses to handlE2 transitions(i.e., always elimi-
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nating the edge from the smallest bubbl@he energetics of
these different paths is also of note. Here foam “ener@y” R
is defined as the total length of soap film in the entire bubble v
network. Thus, in the case of a perfect hexagonal foam, the =
energy iSEpe=(2vV3NAY% whereN is the number of
bubbles and\, is the total area of a systefl]. As shown 0 &2 ~
in Fig. 8, when we plot the ratiB/E,,, the lowu, path has 00 05 1/1<'(1’> = 20

the highest energy whereas the hijghand normalu, paths

are much closer in energy.
oy FIG. 9. (a) Side and(b) area andc) length distributions for run

viii. Dotted line is for the initial configuration, and dot-dashed line
is whenN=890 (transient state Solid lines are foN=660, 520,

The existence of a scaling regime in normal foam evolu-and 380 representing the scaling state.
tion, as well as in grain growth, has been extensively studied
experimentally and by computer simulatiph5]. One of the  probably negligible considering the sensitivity of normal
main ways of characterizing this regime is by following the foam evolution to initial configuration and the numerical er-
behavior of u,—which should be constant during scaling rors as discussed in Sec. Il B.
behavior. In our case, extensive studies on a variety of initial The growth rate of the average cell area has also been a
conditions(runs iii, iv, vii, viii, xiv, and xv, which all have central issue in foam experiments and simulations and it is
the same initial pressui@,=10"2 atm) show au, value in  accepted that normal foams exhibit power-law groj«ts),
the scaling regime which fluctuates between 1.2 and7.4 i.e.,
We also found that, in general, the more disordditagher
M) initial foam configurations reach the scaling state faster.
Our observedu, is slightly higher than AH’s and slightly
lower than the value reported earlier in experimg¢ag and
simulations by Weaire and LER0]. This small difference is

C. Scaling regimes and other behaviors

(@)=A(t—tg)°, (13
whereA is a constant. In spite of the variance in measure-
ments ofa (ranging from 0.64 to 2)0in earlier experiments
[21-23,3, recent careful experimental resufi4,25 indi-
cated the growth exponent is close to one—as suggested by
1.0 simple dimensional analysis. The only point we wish to
make here is to emphasize the sensitivity of the exponent to
. fitting procedure. This is illustrated by data obtained from
run viii. Fitting directly with Eq.(13) (since determininge in
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a log-log plot is likely to have systemetic errgi]), we
found thata is 1.02+0.02 using the data between 750 and
200 bubbles and 1.260.07 when the range is reduced to

B S 700-300. Clearly, reliable calculation of the growth expo-
092 L — E?:;Zlm nent requirgs simu_lations of Igrgg sygtems. .

—lowpy The scaling regime, by definition, is characterized by the
09 L constancy of all distributions, such as the side number and

1024

FIG. 8. The ratio of energy t&., vs number of bubbles in

900 800 700 600 500 400 300 200

N

“normal,” “high,” and “low” u, models.

100

normalized area distributions. As shown in Fig. 9, side dis-
tributions are clearly stationary in the scaling regime. This
type of behavior is observed in most other numerical studies
although we see@(n=6) being only slightly higher than

p(n=>5), whereas AH observed a more noticeable difference
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0 40 80 120 160
t(arb. units)

FIG. 11. The radius of the big center bubbig,vs time in the
propagation of a single defect.

FIG. 10. Sequence of configurations for the propagation of
single defect, whei(a) t=0, (b) t=50, (c) t=100, and(d) t=150.
Initial number of bubbles is 1019 and the unit of time is arbitrary.

E‘}netry is incorporated in the edge and vertex movement
steps.

Finally, in our studies of normal foams we have carried
out extensive investigations of Lewis's lay28], which
claims a linear relationship between the mean area of an
n-sided cell and the side number; and the Aboav-Weaire law
[23,29,3Q which gives a semiempirical relationship for the
average number of sides of the cells that are neighbors to an
n-sided cell. Our numerical resulfg] all agree closely with
those found in other studidsee, for examplg,24,11]).

between them. Again, our results lie between AH’s and ex
perimental result3] in which p(n=6)<p(n=5). By con-
trast, althougtp(a/(a)) in the initial and transient states can
be distinguished from that in a scaling state, it is difficult to
claim that p(a/(a)) is stationary in the scaling regime,
which might be due to the limited data. The behavior of
p(al(a)) is not reported in the AH and WK studies. We also
show the normalized edge-length distributipfl/(l}) that
exhibits some degree of stationarity. Later we will see that V. NUMERICAL RESULTS FOR BREAKING FOAM
this distribution function has special properties in the case of EVOLUTION
breaking foam evolution. .
In complete contrast to the above, single defect propaga- The phenomenon of wall rupture, although it has been

tion in a perfect hexagonal foam is one example in Whicl'fommOnly observed in normal foami24], grain growth

normal foam evolution never reaches a scaling state. AI=22’3]]‘. and magnetic garnet filni82], has not been studied
in detail due to its complexity and the relatively small con-

though we were drawn 1o this problem because of its Ioartla%ribution it makes to the statistical quantities measured in

analogy to front propagation in solidification, it has also been[hose experiments. The first experiment devoted solely to
considered recently ifi26] where it was claimed that in a |, . . )
this subject was recently performed by Burnettal. [15]

mean field model, scaling behavior could occur. ; . : : . _
; . ; : . ..and our simulation studies were motivated by this experi-
In our simulation, a single defect is generated by eIImI'mental work. In this experiment, wall rupture was initiated
nating one edge from a perfect hexagonal lattice, and thi% entle her;ltin from apli ht bo>2 underngath the experimen-
structure is relaxed to an equilibrium initial configuration, tz;; gell and at agcritical “bgr]eakin time'(which de engs on
which is shown in Fig. 1(). Driven by von Neumann's law, the ter,n erature ramping rata Ia? e-scale mechgnical cas-
the initial eight-sided bubble, surrounded by two five-sided P ping 9 L
; . : . cade of wall rupture was observed. In this “cascade re-
bubbles and six hexagons, will grow continuously; con-~""~ ~ .
gime,” it was found that the mean edge length grew linearly

versely, the two five-sided bubbles will shrink. These dy-2 " . . S o2
namics generate the outward propagation of an area unpopi%g;w;; r;?aiir;en:fysomated edge-length distributions were ef-

lated by bubbles. The growth rate of the central area in Fig. In principle, the evolution of a breaking foam can be com-

10 can be predicted by von Neumann’s law. Using the radlusIetely determined if the exact time and location of each

of the central area,, Eq.(2) becomesi(r 2)/dtxn,, where p . . )
the number of sidesn,, of this area is large. Since, is breakage is known. However, the modeling of a breaking

proportional tor_, dr /dt is constant. As shown in Fig. 11, foam is still at a relatively primitive stage since the dynamics

. . , of wall rupture, which involves many complex physico-
the result of our simulation shows linear growth of the "3 chemical igsues is not well understoi/)d anFc)i thepail/ailable
dius, as expected. A very similar calculation was also re- ' ’

ported recently by Yi, Mombach, and Glazigt7] using a experimental results are limited to th0§e mentloned at_)ove. In
A . : ._Sec. Il B, we postulated three breaking rules in which the
Potts model code. In their simulations, the evolving front is

less symmetric and shows what are probably a few spuriou%rObabIIIty to break theth edge is given by

large bubbles in the “melting” domain—undoubtably an ar-

tifact of the Potts model representation. In fact the highly Prohec(l)?, (14)
symmetric evolution that we observe also provides an addi-

tional test of our code and the error controls since no symwherel; is the length oith edge ana takes values 0, 1, and



55 DYNAMICS OF FOAMS WITH AND WITHOUT WALL RUPTURE 607

©

.001 .005 .01
/N

FIG. 12. (a) (a) vs 1N for run xv. By definition of the mean
area, the “evolution exponent” for mean area is always dhevs
1/N for (b) run xv; and(c) run xvii (a single defect propagatinn
The dimension of the system is scaled such that initial valug)of
is the same as that ¢&) for run xv.

2 for each breaking rule. Here, we will test the validity of
these breaking rules by comparing the numerical results with
the experimental ones.

Traditionally, the evolution of a froth is characterized by
following the behavior of various quantities, such as mearb
area growthu,, various probability distributions, etc., as a u

function of either time or the number of bubbles. However,lgaﬁon by contrastg is 0.016, with a negligible standard

since it is only the breaking rules, and not the time mtervad viation that corresponds to a structure evolving towards

between §uccessive wall breaks that are being tested agair?e reme inhomogeneity. If we regard these behaviors of nor-
the experimental results, we need some notion of the topo- '

. . ) . . . . ._""mal foam relaxation and singl f r ion, r -
logical evolution without involving the time variable explic- al foam relaxation and single defect propagation, respec

itly. The apparent difference in topology between a normaﬂvely’ as the two extremes of homogeneous and inhomoge-

and breaking foam can be characterized by the “homogen leous structures, we would expgefor a breaking foam to
N g fo: y 9€NGe hetween 0 and 0.5. For each breaking rule, we choose the
ity” of the spatial structure. Namely, a breakage tends to

drive the pattern of a foam toward an inhomogeneous apt_Wo initial configurations that were uged for runs xv aqd iv of
pearance, while the normal foam tends to retain some degré"1 normal fqam. we Igbel the brealgng foam runs with less
of homog’eneity (A single defect propagation in a normal tfisordered initial cpnflguratlo(used in run xy as runs I, Il
foam being one .exceptio)nThe topological evolution can be and Il _correspondmg to eac_h breakmg_ rate 0, 1,_a_n_d 2
characterized by the changes in homogeneity that are relatr spethely, anq the funs with more disordered initial con-
§Quration (used in run iy as runs IV, V, and VI.
to the energy or mean edge length of a system. Rather tha
attempt to follow these changes as a function of time, we
follow them as a function of bubble number. For any coars-
ening system, the mean area is proportional t¢ by defi- In order to get an overall picture of the evolution of
nition, namely, breaking foams, it is helpful to look at a sequence of
“frames” for the different breaking rules. These are shown
in Figs. 13-15 in which all foams start with the identical
initial structure whoseu, is similar to that of the initial foam
used in the experimental wofl5]. In all three figures, we
whereA, is the total area of a system ahlthe total num- see the progressive enlargement, due to wall breakage, of
ber of bubbles. Accordingly, we have proposgth] a  various bubbles that eventually become surrounded by clus-
power-law evolution for the mean edge length in terms ofters of small bubbles. Tracking this process frame by frame
1IN, ie., (i.e., a movie clearly shows long-range correlations, i.e., a
wall breakage in one region triggering a movement some
mq(i)ﬁ (16) distance away, which are often accompanied by successive
N T1 processes. A noteworthy feature of the simulations is the
frequent appearance of two-sided bubbles; just as in the ex-
whereg denotes the “evolution exponent” of the mean edgeperimental studies of breaking foartend virtually never in
length. normal foamg A two-sided bubble, generated from a three-
As shown in Fig. 12, for anormal form with initial  sided bubble that loses a neighboring eiee to breakage
Voronoi configuration(l) satisfies Eq(16) quite well and3  appears to be stable unless a nearby bubble moves close
is found between 0.48 and 0.50. For a single defect propaenough to induce a wall switching.

FIG. 13. Sequence of configurations for run I. Number of
bbles in(a)—(f) are 1024, 880, 710, 500, 310, and 100.

A. Evolution topology

(a) =Agt

1
N) : (15
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FIG. 14. Sequence of configurations for run Il. Number of kG, 16. Sequence of configurations for run V. Number of
bubbles in(a)—(f) are 1024, 880, 710, 500, 310, and 100. bubbles in(a)—(f) are 1024, 880, 710, 500, 310, and 171.

_ Although the phenomena described above for each break-— 1 or 2 with that of the experiment; a detailed quantitative
ing rule generally agree to some extent with the eXpe”me”taéomparison will be discussed in Sec. Il B. In Fig. 16, we
observation, there are clear differences in evolving patterngow an evolution sequence that starts with a more disor-
for the different breaking rules. The evolution for the randomgereq initial structure with the breaking rute=1 (run V).
breaking rule £=0) seems to be different from the experi- These sequential frames indicate that the evolution of a
mental pattern evolution in that more long edges and 1esgreaking foam is sensitive to the initial foam structure; at

small bubbles survive at later stages. It is, however, difficuligast for those breaking rules, that depends in some way on
to compare qualitatively the evolution with breaking rule (o length of the edge.

B. () behavior

As discussed before, one way to characterize a two-
dimensional coarsening cellular system is through various
evolution exponents. By using E¢L5) in Eq. (16) we see
the relationship

(1y=(a)”. 17)

In the case of normal foam evolutidgaxcluding pathological
cases such as single defect propagation shown in Sec),lll C
we know that the bubble area scales k¢ (i.e., the bubble
length scale set b/ is the same length scale as that set by
the edge lengthand hence3=0.5. However, in a breaking
foam, the length scale set by a typical bubble edge is no
longer the same as that set by the square root of the bubble
area. Accordingly, we can no longer expegt0.5 and,
based on the observation that the typical structure is that of a
(very) large bubble made up of many short sides, we would
expect3<0.5. Experimentally, the observed values ranged
from 0.25 to 0.3715].

We show log-log plots ofl) as a function of M in Fig.
17, in which the power law in Eq16) is well satisfied for all
runs except run VI, and the fitted values gffrom these

FIG. 15. Sequence of configurations for run lll. Number of plots are summarized in Table Il. With the random breaking
bubbles in(a)—(f) are 1024, 880, 710, 500, 310, and 100. rule, regardless of the initial foam structure, we obtain
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FIG. 18. Area distributions for run&) 1, (b) I, (c) lll, and (d)

FIG. 17. Log-log plot of(l) vs 1N for (a) runs I-Ill and(b) V.
runs IV=VI. when 5<n<8 (9 for run V) and eventually the four-sided

B=0.41, which is higher than the experimental value. Thes@ubbles are dominant. However, the length distributions

high evolution exponents, together with the differences ins'hOW somewhat different behavior from the area and side

topology of the evolving patterns described in Sec. IV A,distributions as shown in Fig. 20. Although the length distri-

lead us to conclude that wall breakages do not occur at rar{gytio.ns for runs 1-11l which SF"’.‘” with a narrow length dis-
dom in a breaking foam. Sincg is sensitive to the initial rlbgtlon, show'a §mal| tr.an5|t|on., overall they seem (o be
foam structure for the breaking rules=1 andz=2, the sta_tlonary—whlch is consistent with the experimental obser-
evolution exponents for runs Il and Ill, whose initia} is vation [15].

similar to that of the experimental foam, are compared with

the experimental results. This indicates that the breaking rule V. CONCLUSIONS

z=2 represents the dynamics of a breaking foam more \ye have developed a new algorithm that can deliver ef-

closely than the breaking rule=1. In Sec. Il B, the break- ficient and accurate simulations of two-dimensional dry
ing rulez=1 was proposed based on the empirical observa-

tion that the probability to rupture static single soap film,
within a given time interval, is proportional to its surface
area. Therefore, we suspect that the movement of a soap
film, including expansion or shrinkage, also affects its prob-
ability to rupture.

p(n)

C. Probability distributions

In the case of a normal foam, the probability distributions
of side, area, and edge length were used in order to show the
existence of the scaling regime, in which these distributions
are stationary. By contrast, in a breaking foam, the peaks of
the area and side distributions shift towards smaller values as
shown in Figs. 18 and 19. In the side distribution, it is inter-
esting thatp(n) always increases whem<5 and decreases

p(n)

TABLE Il. “Evolution exponent” for all runs in the breaking
foam simulations. These exponents are obtained with negligible
standard deviations by fitting the data in the rangeNef 1024—
300.

Run | I 1 \ \Y \!

0.412 0.394 0.306 0.409 0.325 0.245

FIG. 19. Side distributions for run®) Il and (b) V.
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of WK and AH. The fact that our algorithm tracks the move-
ment of all edges and vertices at any instant enables the
chaotic behavior triggered by numerical errors to be investi-
gated. It is very likely that these “stochastic” effects are a
source of the small discrepancies found among the physi-
cally realistic computational models, namely, WK, AH, and
ours. Breaking foams have been simulated using this algo-
rithm and compared with the recent experimental wdrk.

In spite of the lack of understanding of the precise breaking
mechanism, the simulation results with the breaking rule
z=2 show similar evolution topologies and growth expo-
nents to those seen in the experiments.

Finally, we comment that since tHendividually stored
surface tension of each edge is independent of the overall
simulation procedure, the code can be easily modified for
systems in which the surface tension of each edge varies.
This makes it fairly easy to study anisotropic grain growth in
which the surface energy varies as a function of orientation
between adjacent cellF].
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